skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Senthil, Shuruthi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rajala, A; Cotrtez, A; Hofmann, R; Jornet, A; Lotz-Sisitka, H; Markauskaite, L (Ed.)
    Free, publicly-accessible full text available June 10, 2026
  2. Abstract A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3$$\,\text {fb}^{-1}$$ fb - 1 . Jets are reconstructed with the anti-$$k_{\textrm{T}} $$ k T algorithm for distance parameters of$$R=0.4$$ R = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity$$|y |_{\text {max}} $$ | y | max of the two jets with the highest transverse momenta$$p_{\textrm{T}}$$ p T and their invariant mass$$m_{1,2} $$ m 1 , 2 , and triple-differentially (3D) as a function of the rapidity separation$$y^{*} $$ y , the total boost$$y_{\text {b}} $$ y b , and either$$m_{1,2} $$ m 1 , 2 or the average$$p_{\textrm{T}}$$ p T of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the$${\text {Z}} $$ Z boson is investigated, yielding a value of$$\alpha _\textrm{S} (m_{{\text {Z}}}) =0.1179\pm 0.0019$$ α S ( m Z ) = 0.1179 ± 0.0019
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ 140 fb - 1 collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ Λ b 0 J / ψ Ξ - K + decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ Λ b 0 ψ ( 2 S ) Λ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ B ( Λ b 0 J / ψ Ξ - K + ) / B ( Λ b 0 ψ ( 2 S ) Λ ) = [ 3.38 ± 1.02 ± 0.61 ± 0.03 ] % , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ B ( ψ ( 2 S ) J / ψ π + π - ) and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ B ( Ξ - Λ π - )
    more » « less
  5. Abstract A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum$$p_{\textrm{T}}$$ p T . This observable is measured in multijet events over the range of$$p_{\textrm{T}} = 360$$ p T = 360 –$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$ 3170 Ge V based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V , corresponding to an integrated luminosity of 134$$\,\text {fb}^{-1}$$ fb - 1 . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$ α S ( m Z ) = 0.1177 ± 0.0013 (exp) - 0.0073 + 0.0116 (theo) = 0 . 1177 - 0.0074 + 0.0117 , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S}$$ α S in the$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V region shows no deviation from the expected NLO pQCD behaviour. 
    more » « less